

Challenges in Concrete Pavement Design: Addressing Foundation Layer Limitations

Houston, TX May 22, 2025

Nancy Beltran, PhD
Director of Concrete Pavements
Cement Council of Texas

CCT Members

CCT Team

Nancy Beltran

DIRECTOR OF CONCRETE PAVEMENTS

nbeltran@cementx.org | 915-203-0387

Randy Bowers

DIRECTOR OF CEMENT STABILIZATION

rbowers@cementx.org | 817-919-5858

Amy Swift

DIRECTOR OF ADMINISTRATION

aswift@cementx.org | 817-281-6799

Andrew Pinkerton

EXECUTIVE DIRECTOR

apinkerton@cementx.org | 817-281-6799

Benefits of Concrete Pavements

- Long life
- Provides good ride
- Requires little or no maintenance

Selecting the Right Concrete Pavement for the Right Situation— Corey Zollinger, Cemex

- Provides more options for rehabilitation
- Able to withstand heavy traffic/loads
- Resilient pavement system
 - Foundation is the key
- In Texas, overall, excellent performance!

Common Challenges in Concrete Pavement Design

- Inadequate Subgrade Support
- Drainage Issues
- Improper Stabilization Techniques
- Non-Uniform Layer Thickness
- Material Quality Variability
- Limited Geotechnical Data or Evaluation

Concrete Pavement Design

- Consists of a systematic process to ensure the pavement structure performs efficiently under the expected traffic loads:
 - 1. Traffic Analysis
 - 2. Subgrade and Foundation Evaluation
 - 3. Slab Thickness Design
 - 4. Jointing and Reinforcing
 - 5. Concrete Material Selection
 - 6. Drainage Design
 - 7. Curing and Construction Considerations

Concrete Pavement System

Supporting Layers

CRCP

4-in. ASB

Subgrade (LTS or CTS)

GW, GP, GM, GC, SW, SP, SM, SC ML, CL, PL, MH, CH, OH

CRCP

1.0-in. AC

6-in. CTB

Subgrade (LTS or CTS)

GW, GP, GM, GC, SW, SP, SM, SC ML, CL, PL, MH, CH, OH

Subgrade Treatment

Advancements in Soil-Cement Research: Findings and Applications – **Ben Reese, Raba Kistner**

- Discuss results of cement treated high PI soils.

Base Type

Impacts of Pavement Foundation A FWD Case Study

Cement Treated Subgrade (CTS) – Reduced Deflections

- Project completed in 2006: 8" CRCP, 4" HMA & 8" LTS or CTS
- Cores taken ~700' apart
- Statewide average deflection for 8" slab = 3.4 mils
- Increased HMA base thickness will not "bridge" weak soils

Deflection on HMA Base

Deflection on Cement Treated Base

Demonstrating the Benefits of Base and Soil Stabilization – A Finite Element Analysis

Finite element modeling is a powerful tool for analyzing concrete pavement performance, allowing engineers to simulate stresses, deflections, and cracking behavior under various loading and environmental conditions.

4-in. HMA Base vs 6-in. CTB

HMA Base

Layer*	Thickness (in.)	Modulus (ksi)	Poisson's Ratio
CRCP	12	5,000	0.15
HMA Base	4	500	0.35
Embankment Type C	8	15	0.35
Existing Subgrade	200	8	0.40

CTB

Layer*	Thickness (in.)	Modulus (ksi)	Poisson's Ratio
CRCP	12	5,000	0.15
HMA Bond Breaker	1	400	0.35
СТВ	6	750	0.20
Embankment Type C	8	15	0.35
Existing Subgrade	200	8	0.40

Maximum Pavement Responses

Location	HMA Base	СТВ
Stress at the Bottom of CRCP (psi)	104	99
Strain at the Top of Subgrade (με)	51*	49*

5% **4**% **1**

^{*} Results in compression

LTS vs CSS – Example 1

Lime Treated Subgrade (LTS)

Layer	Thickness (in.)	Modulus, E (ksi)	Poisson's Ratio, v
CRCP	12	5,000	0.15
НМА	4	400	0.35
LTS	8	35	0.35
Subgrade	200	6	0.45

Cement-Stabilized Subgrade (CSS)

Layer	Thickness (in.)	Modulus, E (ksi)	Poisson's Ratio, v
CRCP	12	5,000	0.15
НМА	4	400	0.35
CSS	8	200	0.25
Subgrade	200	6	0.45

Maximum Pavement Responses

Location	LTS	CSS
Stress at the Bottom of CRCP (psi)	106	102
Strain at the Top of Subgrade (με)	48*	36

25%

Results in compression

LTS vs CSS – Example 2

Lime Treated Subgrade (LTS)

Layer*	Thickness (in.)	Modulus (ksi)	Poisson's Ratio
CRCP	11.5	5,000	0.15
HMA Bond Breaker	1	400	0.35
СТВ	6	500	0.20
LTS	12	24	0.30
Existing Subgrade	200	8	0.40

Cement-Stabilized Subgrade (CSS)

Layer*	Thickness (in.)	Modulus (ksi)	Poisson's Ratio
CRCP	11.5	5,000	0.15
HMA Bond Breaker	1	400	0.35
СТВ	6	500	0.20
CSS	12	200	0.25
Existing Subgrade	200	8	0.40

Maximum Pavement Responses

Location	LTS	CSS
Stress at the Bottom of CRCP (psi)	212	196
Strain at the Top of Subgrade (με)	180*	124*

31%

^{*} Results in compression

Design Recommendations

- CTB vs HMA base
 - Increasing the HMA thickness will not "bridge" weak soils.
- Highly recommend subgrade treatment
 - Always test to ensure you select the most adequate treatment and to determine % content.
- Design for a better foundation
 - If the base underneath the concrete slab does not provide good support, long term pavement performance will be severely compromised, regardless of the concrete slab thickness.

