

Cement-Treated Bases: Design, Construction, and Performance

Randy Bowers, P.E.

Outline

- Materials
- Testing and Mix Design
- Lime plus Cement
- Construction
- Thickness Design Procedure
- Projects
- Summary

CEMENT TREATED BASE

(by any other name)

- Cement Modified Soil (CMS)
- Cement Stabilized Subgrade (CSS) Soil
- Cement Treated Base (CTB)
- Full-Depth Reclamation (FDR) with Cement

Cement-Based Pavement Materials

Ingredients

Materials that Can be Cement-Stabilized

- Sand
- Silt
- Clay
- Gravel
- Shell
- Crushed stone
- Slag
- Recycled HMA
- Recycled concrete

What is Cement Treated Base (CTB)?

- Highly compacted mixture of
 - Aggregate
 - Portland cement
 - Water
- Dense-graded (usually)
- Plant mixed or mixed in place
- Base material for
 - Flexible pavements (asphalt or chip seal surface)
 - Concrete pavements

CTB Uses Variety of Aggregates

- Sand
- Gravel
- Caliche
- Crushed limestone (flex base)
- Recycled materials
 - Asphalt millings/RAP
 - Crushed concrete

Why Consider CTB?

- Strongest, most resilient base available
 - High resilient modulus
 - Highly moisture resistant
 - Resists erosion
 - Resists settling
 - Spreads loads to weak subgrades
- Makes use of available local materials
- Less expensive to use the local materials

Definition of Full-Depth Reclamation

Method of flexible pavement reconstruction that utilizes the existing asphalt, base, and/or subgrade material to produce a new stabilized base course for a chip seal, asphalt, or concrete wearing surface.

Benefits of FDR with Cement

- Increased rigidity spreads the loads
- Eliminates rutting below the surface
- Reduced moisture susceptibility
- Reduced fatigue cracking in asphalt surfacing
- Allows for thinner pavement sections

Materials in FDR with Cement Bases

FDR with cement bases are an intimate mixture of recycled asphalt pavement, graded aggregate base, and/or native soils with measured amounts of portland cement and water that harden after compaction and curing to form a strong, durable, water- and frost-resistant pavement material.

Comparing Different FDR Methods

Viriginia DOT Study on FDR

- Stabilizers Tested:
 - Asphalt emulsion, foamed asphalt, Portland cement
- Calculated layer coefficients
 - Asphalt emulsion: 0.12 0.29
 - Foamed asphalt: 0.18 0.33
 - Portland cement: 0.24 0.34
- VDOT potential savings \$463K to \$1.42M per year with FDR

Analysis of Full-Depth Reclamation Trial Sections in Virginia

http://www.virginiadot.org/vtrc/main/online_reports/pdf/11-r23.pd

BRIAN K. DIEFENDERFER, Ph.D., P.E.

ALEX K. APEAGYEI, Ph.D., P.E. Research Scientist

Final Report VCTIR 11-R23

VIRGINIA CENTER FOR TRANSPORTATION INNOVATION AND RESEARCH 530 Edgemont Road, Charlottesville, VA 22903-2454 www.VTRC.net

Strength and Performance

The purpose of the mix design procedure is to select the correct amount of cement that most closely balances both strength AND performance for the roadway materials.

Rigid Pavements TxDOT Base Layer Requirements

TxDOT recognizes the one of the following layers for concrete slab support:

- 4 in of hot-mix asphalt (HMA) or asphalt stabilized base (ASB)
- Or a minimum 1 in hot-mix asphalt bond breaker over 6 in. of cement treated base (CTB)

Field performance evaluations of concrete pavements have revealed that durable, stabilized, non-erodable base is essential to the long-term performance of concrete pavement.

If the base does not provide good support, the concrete pavement will be compromised, and long-term performance will be compromised.

Base Type Selection

- \ge 4-in. HMA or ASB
- ≥ 1.0-in. HMA or ASB + 6-in. CTB

4-in. ASB
Subgrade (LTS or CTS)

CRCP

1.0-in. AC

6-in. CTB

Subgrade (LTS or CTS)

Improved Pavement Quality with CTB

HMA Base + LTS FWD deflection: 23 mils

CSB/Bond breaker Base + LTS FWD deflections: 15 mils

Construction

Plant-Mixed CTB

Plant-Mixed CTB

Construction Process – Similar to Soil Cement

- Moisture Conditioning (If Necessary)
- Initial Pulverization (If Necessary)
- Preliminary Grading
- Cement Application
- Mixing
- Optimum Moisture Content
- Compaction
- Final Grading

Construction Equipment

- Cement or slurry spreader/distributor truck
- Reclaimer/mixer
- Water truck
- Grader
- Tamping/sheepsfoot/padfoot roller
 - for clayey and silty material
- Smooth drum roller (for granular soils)
- Pneumatic tire roller (optional)

Images: Virginia DOT

Full Depth Reclamation with Cement Construction Process

- Pulverize the roadbed materials
- Blade to desired roadway template
- Spread cement either dry or as a slurry
- Mix all materials directly on the roadbed
- Bring to optimum moisture content
- Compact to 98% standard Proctor
- Shape the roadway to Plan requirements

Inside a Reclaimer

Compaction and Grading

Material is compacted to 96 to 98 percent minimum standard proctor density and then graded to appropriate lines, grades, and cross-sections.

Microcracking Procedure

- 10-to-12-ton vibratory roller
- 24 to 48 hours after placement
- Creep speed
- High amplitude
- Typically, 3 passes

Ottinger Road Keller, TX

- Reclaimed in Spring 2007
 - 1+ mile road
 - FDR with 4% cement
 - Middle section microcracked after 24 hours
 - End sections reclaimed but not microcracked [control sections]

Ottinger Road Keller, TX

Ottinger Road Non-Microcracked Section

Ottinger Road Microcracked Section

THICKNESS DESIGN PROCEDURES

Pavement Thickness Design Procedures

Mechanistic

 Based on the mechanics of a pavement structure (e.g., PCA procedure)

Empirical

 Based on observed pavement performance (e.g., 1993 AASHTO Guide)

Mechanistic-Empirical Based on a combination of

 Based on a combination of both mechanics and observed pavement performance (e.g., AASHTOWare Pavement ME Design)

PCA Thickness Design Procedure

- First published in 1970 as PCA Thickness Design for Soil-Cement Pavements
- Based on research, full-scale tests, design theory, and observed pavement performance
- Fatigue consumption ultimately determines the FDR layer thickness
- Used when FDR will be covered with bituminous surfacing, although the design covers adequate thickness of the stabilized layer

1993 AASHTO Thickness Design Procedure

- AASHTO Guide For Design of Pavement Structures
- Based on AASHO Road Test
- Purely empirical method
- Conservative guidance for FDR material contribution based on unconfined compressive strength
- Must assume layer coefficients
- Simple and quick determination of pavement design thickness

AASHTOWare Pavement ME Design

- Design procedure formerly known as MEPDG
- Ultimate pavement thickness design tool
- Use of layered elastic analysis and developed performance models
- Use critical tensile stress at the bottom of FDR layer
- Requires a great deal of inputs
- Very expensive to access
- Performance checks of all layers must be made

PavementDesigner.org

Created to simplify the cement-based pavement thickness designs for:

- > Parking lots
- Roadways
 - JPCP, RCC, CRCP
 - Overlays (bonded / unbonded)
 - Composite pavements
- ➤ Industrial / Intermodal yards

The Best Available Online Design Tools

Example Project and Pavement Inputs

Project Inputs

- Minor arterial
- 20-year design life
- 1,700 trucks/day
- 2% annual growth
- Directional distribution = 50%
- Design lane distribution = 100%

Pavement Inputs

- Poisson's ratio of subgrade = 0.30
- Elastic modulus of subgrade = 14 ksi
- 1 subbase layer of 8-inch fulldepth reclamation

Privacy Policy Terms of Service

Privacy Policy Terms of Service

Output Report

- Project Description
- Design Summary
- Calculated minimum thickness of surface layer
- Pavement Structure
 - Subgrade, subbase, and surface layer inputs
- Project Level
- Traffic type
- Design life
- Growth rate
- Design Method

Thickness Design Procedure Comparisons

HMA Surface = 4.0"

FDR Base = 8.0"

Sandy Clay Subgrade

HMA Surface = 4.0"

FDR Base = 7.5"

Sandy Clay Subgrade

HMA Surface = 4.0"

Stone Base = 11.0"

Sandy Clay Subgrade

Projects

PCA Funded Project

- Study conducted in 2005
- Identified candidate project sites in concert with PCA
 - State (DOT), County, City Agencies, Private
- Interaction with select officials
- Visual Pavement Condition Index (PCI) survey
- Extracted roadway cores for UCS measurements

Performance Evaluation

79 Projects Studied

Project age, years

LTP Study Conclusions

- Overall, excellent LTP
- Average Pav't Condition Index of 89
- UCS of cores 260 to over 1,000 psi
- Cement contents 2 to 12% with average being 5%
- Most surface distress was in the asphalt layer
- No major failures attributed to the cementstabilized base
- Owners are happy with the performance and plant
 to do more in the future

Summary

Concluding Comments

- Use of in-place materials
- Wide variety of materials
- Very sustainable process
- Improved pavement performance
- Fast, durable, and strong
- Must know the expected material properties of the FDR layer
- Simple to complex methods to determine FDR thicknesses
- Need a good working knowledge of pavement design principles

Primary Resource Materials

Integrated Pavement Solutions

- Portland Cement Concrete
- Concrete Overlays
- Pervious Concrete
- Roller Compacted Concrete
- Full-Depth Reclamation
- Cement-Treated Base
- Cement-Stabilized Subgrade
- Cement-Modified Soil

"A cement-based solution for every pavement need/challenge"