

# THE SCIENCE / ART OF RCC MIX DESIGN AND QC

Corey J. Zollinger, P.E.









#### **KEY QUESTIONS TO BE ANSWERED TODAY**

- What are the Keys to Aggregate & Sand Selection?
- How are Mix Volumetrics Determined?
- Understanding Mix Behavior
- What are the Key Steps to Mix Quality Control?



# RCC PAVEMENT COUNCIL FOUNDED IN 2014, PROVIDES SUPPORT FOR RESEARCH AND PROMOTION





# TECHNICAL RESOURCES HAVE BEEN DEVELOPED Construction Specifications & Guide Books are available



Guideline specification for Exposed Surface RCC pavements



- Developed by the CPTech Center at Iowa State
- Covers all aspects
- Available through PCA



#### ROLLER COMPACTED CONCRETE IS A NEGATIVE SLUMP CONCRETE



A negative-slump <u>concrete</u> that is compacted not consolidated.

- Placed with High Density Asphalt Machine
- No forms
- No reinforcing steel, dowels, or fibers (Changing...)
- No finishing. (Changing...)
- Compacted with rollers
- No internal vibration (consistency of damp gravel).

RCC is a concrete pavement that is placed in a different way!

# **MULTIPLE PERSONALITIES**



# RCC MIX DESIGN USES SAME MATERIALS AS CONVENTIONAL CONCRETE, HOWEVER IN DIFFERENT COMBINATIONS

**Achieves Similar or Better Engineering Properties Than Conventional Concrete** 



| Typical Engineering<br>Properties | Conventional<br>(psi) | RCC<br>(psi)         |  |
|-----------------------------------|-----------------------|----------------------|--|
| Compressive Strength              | 3,000 - 5,000         | 4,000 - 6,000        |  |
| Flexural Strength (MOR)           | 500 – 700             | 600 - 850            |  |
| Elastic Modulus                   | 3.0 – 5.0 million     | 3.0 – 5.5<br>million |  |
| Conventional Concrete             | RCC                   |                      |  |
|                                   |                       |                      |  |



#### MIXTURE DESIGN PROCEDURE

#### Step 1: Select Coarse Aggregate, Intermediate Aggregate, & Sand

- Most important aspect of mix design (85% of mixture)
- Selection based on gradation test results of available aggregates
- Quantity of aggregate sources depends on # of aggregate bins at production plant
- Need to achieve a balance of angularity and surface appearance







#### Basic Criteria

- ASTM C33
- 2 or more stockpiles
- From qualified sources from State DOT qualified products listings
- Plasticity Index less than 5



## MOST COMMON AGGREGATE SELECTION PROCEDURE

#### **Max Density Gradation Plot**



# MOST COMMON AGGREGATE SELECTION PROCEDURE

| Sieve Size        | Lower & Upper<br>Specification Limits<br>1/2 in (12.5 mm) |       | Lower & Upper<br>Specification Limits<br>3/4 in (19.0 mm) |       |
|-------------------|-----------------------------------------------------------|-------|-----------------------------------------------------------|-------|
| 1.5 in. (37.5 mm) |                                                           |       |                                                           |       |
| 1 in. (25 mm)     |                                                           |       | 100.0                                                     | 100.0 |
| 3/4 in. (19 mm)   | 100.0                                                     | 100.0 | 95.0                                                      | 100.0 |
| 1/2 in. (12.5 mm) | 81.0                                                      | 100.0 | 70.0                                                      | 95.0  |
| 3/8 in. (9.5 mm)  | 71.0                                                      | 91.0  | 60.0                                                      | 85.0  |
| No. 4 (4.75 mm)   | 49.0                                                      | 70.0  | 40.0                                                      | 60.0  |
| No. 8 (2.36 mm)   | 33.0                                                      | 54.0  | 30.0                                                      | 50.0  |
| No. 16 (1.18 mm)  | 24.0                                                      | 40.0  | 20.0                                                      | 40.0  |
| No 30 (600 ųm)    | 15.0                                                      | 30.0  | 15.0                                                      | 30.0  |
| No 50 (300 ųm)    | 10.0                                                      | 25.0  | 10.0                                                      | 25.0  |
| No. 100 (150 ųm)  | 2.0                                                       | 16.0  | 2.0                                                       | 16.0  |
| No 200 (75 ųm)    | 0.0                                                       | 8.0   | 0.0                                                       | 8.0   |



#### MIXTURE DESIGN PROCEDURE

#### Step 2: Select a mid – range cementitious content

- Minimum 450 lbs cement / CY
- 12-14% Type I Portland cement is selected for the first trial batch
- Based % on weight, so make enough and do not worry about volumes yet
- Mix the cement dry, and then add water

- Step 3: Develop moisture density relationship plots
- Perform a modified Proctor test at the selected cement content
- Construct moisture-density relationship curve (Use spreadsheet)
- Determine Maximum Dry Density (MDD) and Optimum Moisture Content (OMC)



(ASTM D1557)





## **MIXTURE DESIGN EXAMPLE**

| Mix Quantities                        |                     |      |             |              |
|---------------------------------------|---------------------|------|-------------|--------------|
| Max Dry Density (                     | 145.0               | ]    |             |              |
| Max Wet Density (lbs/CF) 152.8        |                     |      | <b>&gt;</b> | Proctor Test |
| Optimum % Moist                       | ure                 | 5.4% |             |              |
| Coarse Aggregate                      | #1 absorption %     | 1.1% |             |              |
| Fine Aggregate #1                     | absorption %        | 1.7% |             | Aggregate    |
| Coarse Aggregate #2 absorption % 1.1% |                     |      |             | Aggregate    |
| Fine Aggregate #2 absorption % 0.09   |                     |      |             | Properties   |
|                                       |                     |      |             |              |
| Target CA #1 %                        | 1/2" x #8           | 20   | ]           |              |
| Target FA #1 %                        | Concrete Sand       | 55   |             | Combined     |
| Target CA #2 %                        | 3/8" x 1/4" Crushed | 25   |             |              |
| Target FA #2 % 0                      |                     |      | J           | Gradation    |



#### MIXTURE DESIGN PROCEDURE

# Step 4: Cast samples to measure compressive strength (ASTM C 1435)

- Calculate trial mix proportions
- Batch RCC materials
  - Maintain percent Optimum Moisture Content as determined in step 3
  - Use varying cementitious contents such as 10,
     12 and 14 percent
- Make compressive strength test cylinders for each cement content









13

#### MIXTURE DESIGN VOLUMETRICS

| Mix Quantities    |                     |       |   |  |  |
|-------------------|---------------------|-------|---|--|--|
| Max Dry Density ( | 145.0               |       |   |  |  |
| Max Wet Density   | (lbs/CF)            | 152.8 |   |  |  |
| Optimum % Moist   | ure                 | 5.4%  |   |  |  |
| Coarse Aggregate  | #1 absorption %     | 1.1%  |   |  |  |
| Fine Aggregate #1 | absorption %        | 1.7%  |   |  |  |
| Coarse Aggregate  | #2 absorption %     | 1.1%  | \ |  |  |
| Fine Aggregate #2 | 0.0%                |       |   |  |  |
| % Cementitious    | 11.5%               |       |   |  |  |
| % Cement          | 11.5%               |       |   |  |  |
| % Fly Ash (of cem | 0.0%                |       |   |  |  |
| Target CA #1 %    | 1/2" x #8           | 20    | ┝ |  |  |
| Target FA #1 %    | Concrete Sand       | 55    |   |  |  |
| Target CA #2 %    | 3/8" x 1/4" Crushed | 25    |   |  |  |
| Target FA #2 %    | 0                   | 0     |   |  |  |
|                   |                     |       |   |  |  |

#### Mix Weight (lbs) Per CY

Water Weight = (152.8-145.0) x 27 = 211

<u>Total Dry Materials</u> = 145.0 x 27 = 3915

- 1. Select Cement content
- 2. CA = (Total Dry-cement) x % Target CA = (3915-450) X .2 = 693

#### SSD Weight

1. CA = Dry weight x (1 + %SSD)

| Ingredient        |                     | Batch Weight<br>(Dry) (lbs/CY) | Batch Weight<br>(SSD) (lbs/CY) | Specific Gravity<br>(SSD) | Absolute Volume (CF) |
|-------------------|---------------------|--------------------------------|--------------------------------|---------------------------|----------------------|
| Cement            |                     | 450                            | 450                            | 3.150                     | 2.289                |
| Fly Ash           |                     | 0                              | 0                              | 2.350                     | 0.000                |
| CA #1             | 1/2" x #8           | 693                            | 701                            | 2.680                     | 4.190                |
| FA #1             | Concrete Sand       | 1906                           | 1938                           | 2.630                     | 11.810               |
| CA #2             | 3/8" x 1/4" Crushed | 866                            | 876                            | 2.680                     | 5.237                |
| FA#2              | 0                   | 0                              | 0                              | 2.570                     | 0.000                |
| Total Water conte | nt (lbs)            | 211                            | 211                            |                           |                      |
| Water in Aggrega  | tes (lbs)           | 0.0                            | 49.5                           | 5                         |                      |
| Water added by F  | Plant (Free Water)  |                                |                                |                           |                      |
| (lbs)             |                     | 211.4                          | 161.9                          | 1.000                     | 2.594                |

## **MIXTURE DESIGN VOLUMETRICS**

|                                                            |                     | <b>5</b>                    | D . 1 W . 1 .  |                        |                      |
|------------------------------------------------------------|---------------------|-----------------------------|----------------|------------------------|----------------------|
| Ingredient                                                 |                     | Batch Weight (Dry) (lbs/CY) | (SSD) (lbs/CY) | Specific Gravity (SSD) | Absolute Volume (CF) |
| Cement                                                     |                     | 450                         | 450            | 3.150                  | 2.289                |
| Fly Ash                                                    |                     | 0                           | 0              | 2.350                  | 0.000                |
| CA #1                                                      | 1/2" x #8           | 693                         | 701            | 2.680                  | 4.190                |
| FA #1                                                      | Concrete Sand       | 1906                        | 1938           | 2.630                  | 11.810               |
| CA #2                                                      | 3/8" x 1/4" Crushed | 866                         | 876            | 2.680                  | 5.237                |
| FA#2                                                       | 0                   | 0                           | 0              | 2.570                  | 0.000                |
| Total Water co                                             | ontent (lbs)        | 211                         | 211            | _                      |                      |
| Water in Aggregates (lbs)                                  |                     | 0.0                         | 49.5           |                        |                      |
| Water added by Plant (Free Water)                          |                     |                             |                |                        |                      |
| (lbs)                                                      |                     | 211.4                       | 161.9          | 1.000                  | 2.594                |
| The "Typical" Mix Design parameters can then be calculated |                     |                             |                |                        | can                  |
| Total Final Vo                                             | lume (CF)           |                             |                |                        | 26.120               |
| Calculated Air                                             | Volume (CF)         |                             |                |                        | 0.880                |
| Calculated %                                               | Air Volume          |                             |                |                        | 3.26%                |
| Water absorbe                                              | ed in Aggregates    | 49.55                       |                |                        |                      |
| Free Water                                                 |                     | 162                         |                |                        |                      |
| W/CM Ratio                                                 |                     | 0.36                        |                |                        |                      |
| Aggregate / C                                              | ement Ratio         | 7.70                        |                |                        |                      |



# IMPROVED UNDERSTANDING OF "AGGREGATE PROPERTIES" IMPACT ON "COMPACTED BEHAVIOR"

Aggregate Properties

**Size Distribution** 

**Sand Type** 

**Aggregate Shape** 

**Top Size** 

**Absorption** 







Compacted Behavior

**Screed Stability** 

**Cold Joint Forming** 

**Surface Appearance** 

Strength

**Roller Marks** 

**Density** 

Segregation

**Ideal Moisture Content** 

## **HOW DOES SAND TYPE AFFECT THE PAVING MIX?**

## **Example from California Project**



#### **KEY QUESTIONS TO BE ANSWERED TODAY**

- What are the Keys to Aggregate & Sand Selection?
- How are Mix Volumetrics Determined?
- Understanding Mix Behavior
- What are the Key Steps to Mix Quality Control?



# MIXTURE DESIGN What Is The Optimal Paving Moisture Content?



# MIXTURE DESIGN What Is The Optimal Paving Moisture Content?



# MIXTURE DESIGN What Aggregate Properties Change the Optimal Paving Moisture Content Window??



### DOES THE SHAPE OF THE PROCTOR CURVE MATTER?

What Aggregate Properties Affect the Shape of the Curve?





Mix #2 will have a lower sensitivity to moisture fluctuations and be "easier" to pave

#### ADMIXTURES CAN HELP MITIGATE HOT / DRY WEATHER

#### Intended Goals of the Research

 Compare workability and moisture retention of mixes with various admixtures









# THE SURFACE APPEARANCE AND TEXTURE OF RCC IS DEPENDANT ON PAVER TYPE AND AGGREGATE SELECTION





#### **RCC Aggregate 45 Power Gradation**





#### **Compressive Strength Comparison**







#### **KEY QUESTIONS TO BE ANSWERED TODAY**

- What are the Keys to Aggregate & Sand Selection?
- How are Mix Volumetrics Determined?
- Understanding Mix Behavior
- What are the Key Steps to Mix Quality Control?



#### RCC MIXTURE MOISTURE CONTENT TESTING

TEST STANDARD

**ASTM C566** 

**PRECISION** 

0.79% (d2s for aggregate)

MIN. FREQUENCY

Often / As needed

ACCEPTANCE

± 1-2% of Optimum





## **IN-PLACE WET MAT & JOINT DENSITY TESTING**

TEST STANDARD

**ASTM C1040** 

**PRECISION** 

1.4 pcf (d2s)

MIN. FREQUENCY

300 - 750 CY

ACCEPTANCE

Ave. of 4 ≥ 98% RC 0 < 96% RC









## **FABRICATING COMPRESSION TEST CYLINDERS**

#### **EQUIPMENT**











#### **Best Practice Recommendations**

- 1 Proctor Curve Mix Specific
- 2 Build and Eat Stockpiles Consistently
- Moisture Content (Dry Back) Aggregate / Sand Stockpiles
  - 4 Produce Mix
  - 5 Moisture Content (Dry Back) Mix @ Plant
  - 6 Moisture Content (Dry Back) Mix @ Paver
- Nuclear Density Behind Paver

  Calibrate Nuclear Gauge Moisture to Dry Back
- 8 Nuclear Density Behind Rollers
- 9 1 Point Proctor Check Curve







# WITH THE RIGHT EQUIPMENT, RIGHT KNOW HOW, AND PROPER INSPECTION A SUCCESSFUL PROJECT IS POSSIBLE



# **QUESTIONS?**

Corey J. Zollinger, P.E.

**RCC Pavement Council: Chairman** 

**CEMEX: Director – Sustainable Infrastructure Solutions** 

coreyj.zollinger@cemex.com

713-722-6084